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The Nambu-Goto model is investigated by using the canonical Monte Carlo simulations on fixed connec-
tivity surfaces of spherical topology. Three distinct phases are found: crumpled, tubular, and smooth. The
crumpled and the tubular phases are smoothly connected, and the tubular and the smooth phases are connected
by a discontinuous transition. The surface in the tubular phase forms an oblong and one-dimensional object
similar to a one-dimensional linear subspace in the Euclidean three-dimensional spaceR3. This indicates that
the rotational symmetry inherent in the model is spontaneously broken in the tubular phase, and it is restored
in the smooth and the crumpled phases.
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I. INTRODUCTION

A considerable number of studies have been conducted on
the phase structure of the elastic membrane model of
Polyakov-Kleinert and Helfrich[1–14]. The Hamiltonian of
the model includes not only the Gaussian term but also a
bending energy term, which can make the surface smooth.
Thus it has been recognized that there are a smooth phase
and a crumpled phase in the model of spherical topology.
Numerical studies have also been made to understand the
phase transitions in the tethered model and in the fluid model
on triangulated surfaces[15–27], where the tethered and the
fluid models are those defined on fixed connectivity surfaces
and on dynamically triangulated surfaces, respectively. Ex-
cept those smooth surfaces and crumpled surfaces, some lin-
ear structure [28–31] and branched polymer surfaces
[26,32,33] have also been recognized in the context of sur-
face models.

On the other hand, little is known about a model of tubu-
lar surfaces. A tubular surface is considered as one of the
basic forms of real physical membranes[34,35].

Reviewing references on tubular surfaces, we must recall
anisotropic surface models that have been constructed to un-
derstand tubular surfaces[7,36]. A tubular phase is realized
in the anisotropic model due to an anisotropic bending
modulus.

However, there has been no study that tried to understand
tubular surfaces from an isotropic surface model. Therefore
it will be interestng to study an isotropic tethered surface
model corresponding to the Nambu-Goto string[37]. The
purpose of this study is to understand the phase structure of
the tethered surface model of Nambu and Goto with a deficit
angle term, which is obtained from the co-ordination depen-
dent term. No bending energy term is included in the Hamil-
tonian, whereas the deficit angle term serves as a curvature

energy smoothing the surface. We will show numerically that
the model has three distinct phases; crumpled, tubular, and
smooth. The crumpled and the tubular phases are connected
by a higher-order transition, whereas the tubular and the
smooth phases are connected by a first-order transition.

We consider that oblong tubular surfaces can be seen in
the Nambu-Goto model. A discretized Hamiltonian of the
Nambu-Goto string is given by the sum of the area of tri-
angles, which corresponds to the Gaussian term of the
Polyakov-Kleinert model. The area term of the Nambu-Goto
model imposes a constraint only on the area of triangles, and
hence all the triangles become oblong and form spiky con-
figurations. In fact, it is well known that the partition func-
tion of the Nambu-Goto model is not well defined[38].
However, it is possible that the partition function of the
Nambu-Goto model changes to a well-defined one if some
additional term is included in the partition function, as was
suggested already in Ref.[38]. Then, it is expected that such
oblong triangles may form tubular surfaces in such a well-
defined model if the additional term tends to modify the
spherical surface to a tubular one.

II. MODEL

The area energyS1 is defined by

S1 = o
D

AD, s1d

whereAD is the area of the triangleD in a triangulated sur-
face of spherical topology. This energyS1 of Eq. (1) is a
straightforward discretization of the Nambu-Goto action de-
noted byS=ed2xÎg, whereg is the determinant of the first
fundamental form on the world surface swept out by strings.

The partition functionZ of the Nambu-Goto surface
model is defined by

Zsad =E p
i=1

N

dXi exps− Sd,
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SsX,Td = S1 − aS3, S3 = o
i

lnsdi/2pd, s2d

where the HamiltonianS is given by a linear combination of
the Gaussian termS1 and the deficit angle termS3, in which
di is the sum of the angles of vertices meeting at the vertexi.
SsX,Td denotes thatS depends on the embeddingX and the
triangulationT fixed on a uniform lattice, whose construction
will be described further in Sec. III. The center of the surface
is fixed to remove the translational zero mode.Zsad of Eq.
(2) denotes that the model is dependent on the parametera
which is the coefficient of the deficit angle termS3. It should
also be noted that the HamiltonianSsX,Td is defined only
with intrinsic variables of the surface and hence independent
of the extrinsic geometries.

The deficit angle termS3 has a deep connection with the
integration measuredXi [39–41]. We have to remind our-
selves thatdXi can be replaced by a weighted measuredXiqi

a,
whereqi is the co-ordination number of the vertexi, anda is
considered to bea=3/2. Considering thatqi is a volume
weight of the vertexi, we think it is possible to assumea as
an arbitrary number. Moreover, the co-ordination numberqi
can be replaced by the vertex angledi according to

PidXiqi
a → PidXi expSao

i

ln diD .

The constant termoiln 2p is included to normalizeS3 in Eq.
(2) so thatS3=0 whendi =2p at every vertex. Thus we have
the expressionS3 in Eq. (2). Note thatS3=0 not only on the
flat surface but also on cylindrical surfaces.

It should also be noted that the deficit angle termS3 is
expected to play a nontrivial role in the discrete model which
has a finite number of verticesN. We expect thatS3 is not
irrelevant in surface models such as the Nambu-Goto model
or the Polyakov-Kleinert model. In fact, it was reported by
Ref. [25] where the phase transition of the fluid model of
Polyakov and Kleinert depends on the coordination depen-
dent termoiln qi.

The unit of physical quantities can be explained as fol-
lows: The HamiltonianS in Eq. (2) is obtained fromS
=aS1−aS3 by assuming the surface tension coefficienta as
a=1. It should be noted that the choicea=1 represents not
only a redefinition ofa asa /a but also a choice of the unit
of length asÎkT/a=1, whereT is the temperature andk the
Boltzmann constant. Thus the unit ofa becomeskT/a. The
choice of ÎkT/a=1 for the unit of the length is possible
because of the scale invariant property of the partition func-
tion in Eq. (2).

III. MONTE CARLO TECHNIQUE

The triangulated surfaces, on which the model is defined,
are uniform in the co-ordination numberq. On the uniform
lattice, the number of verticesNq of q=5 is N5=12, and all
other vertices are ofq=6. These lattices were obtained by
Monte Carlo(MC) simulations with the dynamical triangu-
lation for a model whose Hamiltonian is defined bySG
+bS2−aS3sqd with sufficiently largea, whereSG=oil i

2 is the
Gaussian term,S2=ois1−cosuid the bending energy term,

andS3sqd=oiln qi, which is different fromS3 in Eq. (2). The
well definedness of the uniform lattice must be confirmed,
since there are finitely many uniform lattices constructed in
this technique for eachN. We have first confirmed that a
fixed connectivity surface model, which is defined bySG
+bS2, is well defined on such uniform lattices. In fact, the
specific heat for the bending energyS2 is independent of the
choice of the uniform lattice.

The canonical Metropolis technique is used to updateX.
The positionXi is moved to a new positionXi8=Xi +DXi,
whereDXi is randomly chosen in a small sphere.Xi8 is ac-
cepted with the probability Minf1,exps−DSdg, where DS
=Ssnewd−Ssoldd. The radius of the small sphere forDXi is
chosen at the beginning of the simulations to maintain 35 –
60% of acceptance rate; almost all MC simulations are done
on about 50% of acceptance rate.

A lower bound 10−6A0 is imposed on the area of triangles
in the update ofX, whereA0 is the mean area of the triangles
computed at every 250 MCSs(Monte Carlo sweeps) andA0
is constant due to the relationS1/N=1.5. However, the areas
are almost free from such constraint, because the areas of
almost all triangles are larger than 10−6A0 throughout the MC
simulations. No constraint is imposed on the bond length.

IV. RESULTS

We first show in Figs. 1(a) and 1(b) the mean square size
X2 defined by

X2 =
1

N
o

i

sXi − X̄d2, X̄ =
1

N
o

i

Xi , s3d

where X̄ is the center of the surface.X2 in Fig. 1(a) repre-
sents that the size of surfaces continuously increases with
increasinga, and also represents that the shape of the sur-
faces rapidly changes ata.100. On the other hand,X2

shown in Fig. 1(b) clearly represents some discontinuous
transition, whereX2 abruptly changes. The dashed lines
drawn vertically on the data of theN=1000 surface in both
of the figures represent the phase boundaries, on which we
focused our attention in this paper.

The convergence speed of MC is very low in the tubular
phase close to the smooth phase. The total number of MCS at

FIG. 1. (a) X2 obtained at relatively smalla in the vicinity of the
boundary between the crumpled and the tubular phases.(b) X2 ob-
tained at relatively largea in the vicinity of the boundary between
the tubular and the smooth phases. The unit ofX2 and a is kT/a,
wherea is the surface tension.
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a=20 000 on theN=1500 surface is about 23109, where
1.53109 MCSs were discarded for the thermalization. This
is the reason why we use surfaces of size up toN=1500. The
reason of the low convergence speed seems due to a straight-
line structure of the surface, which will be shown below.
Since the vertices can move only along the line, the surface
deforms very slowly. On the contrary, the convergence both
in the smooth phase and in the crumpled phase is relatively
faster than that in the tubular phase. In the simulation the
expected relationS1/N=3/2 issatisfied in the configurations
reached after the thermalization at everya.

Figure 2(a) shows log-log plots ofX2 againstN obtained
at a=50 anda=200. Plots ofX2 againstN in Fig. 2(b) de-
noted bytubular (smooth) were obtained below(above) the
discontinuous transition point in eachN as shown previously
in Fig. 1(b). The straight lines plotted in Figs. 2(a) and 2(b)
are those fitted by

X2 ~ N2/H, s4d

whereH is the Hausdorff dimension. From the slope of the
plotted lines, we have

H50 = 7.24 ± 0.48, Hsmo= 1.93 ± 0.01, s5d

whereH50 andHsmo were obtained from the data denoted by
a=50 in Fig. 2(a) and those bysmoothin Fig. 2(b), respec-
tively. Those results are in agreement with our expectation.
In fact,H is expected to be very large in the crumpled phase,
and it is also expected to beH=2 in the smooth phase. More-
over, we haveH200=1.80±0.02 andHtub=1.22±0.03, which
were obtained from the data denoted bya=200 in Fig. 2(a)
and those bytubular in Fig. 2(b), respectively.H200 andHtub
slightly deviate fromH=2 which is confirmed in the case of
branched polymer surfaces[26], where surfaces randomly
stretch and hence are rotationally symmetric.

Snapshots ofN=1000 surfaces are shown in Figs.
3(a)–3(d) obtained at a=50, a=200,a=12 000, and a
=16 000. Figures 3(a), 3(b), and 3(d) were drawn in the same
scale, which is different from that in Fig. 3(c). The axis di-
rection of the surface in Fig. 3(c) is spontaneously chosen.
The direction of the axis remains almost unchanged through-
out the MC simulation. Thus we find no tubular surface
bending in the tubular phase forNø1500. The straight-line

structure shown in Fig. 3(c) is expected to survive even at a
sufficiently largeN. The reason is because bothS3 and ob-
long triangles tend to straighten the surface.

Figures 4(a) and 4(b) are normalized distributionhsLd of
the bond lengthL sampled at every 500 MCSs in the final
23107 MCSs onN=1000 surfaces. The normalization of
hsLd is given by oihsLd /DL=1, whereDL=0.02, and the
sumoi runs over all bonds and henceoi1 becomes identical
with NB the total number of bonds. The dashed and solid
curves denoted bycrumpledand tubular in Fig. 4(a) were
obtained ata=50 anda=200, respectively, and those de-
noted bysmoothand tubular in Fig. 4(b) were obtained at
a=16 000 anda=12 000, respectively.

We note thathsLd obtained on surfaces of size other than
N=1000 are exactly identical withhsLd in Fig. 4(a) if a is
identical with each other. Moreover,hsLd obtained at the

FIG. 2. (a) Log-log plot of X2 vs N at a=50 (crumpled phase),
anda=200(tubular phase), and(b) those obtained ata close to the
phase boundary of the discontinuous transition. The unit ofX2 is
kT/a.

FIG. 3. Snapshots ofN=1000 surfaces obtained at(a) a=50
(crumpled), (b) a=200 (tubular), (c) a=12 000 (tubular), and (d)
a=16 000(smooth). Surfaces in(a), (b), and (d) are drawn in the
same scale, which is different from that in(c).

FIG. 4. Normalized distributionhsLd of the bond lengthL ob-
tained at(a) a=50 (crumpled), anda=200 (tubular), and at(b) a
=12 000(tubular), and a=16 000(smooth), on N=1000 surfaces.
The unit ofL is ÎkT/a.
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smooth phase, denoted bysmoothin Fig. 4(b), is indepen-
dent of bothN and a in the smooth phase. WhilehsLd is
dependent ona in the tubular phase close to the crumpled
phase, it is almost independent of bothN anda in the tubular
phase close to the smooth phase. The fluctuations of the sur-
face size in the tubular phase close to the smooth phase are
relatively larger than those in the tubular phase close to the
crumpled phase.

It should be noted that the distributionhsAd of the areaA
of the triangles, which is not presented in a figure, is univer-
sal in a sense thathsAd is independent not only ofN but also
of a. hsAd is not influenced even by the discontinuous tran-
sition. In fact,hsAd obtained in the tubular phase is exactly
identical not only with that in the smooth phase but also with
that in the crumpled phase.

It must be checked that the size of triangles is negligible
compared to the size of surfaces at sufficiently largeN. In
order to see that the maximum bond lengthLmax is consider-
ably smaller than the size of surfaces in the tubular phase, we
plot in Figs. 5(a) and 5(b) Lmax obtained in the final 2
3107 MCSs on each surface. We find in Fig. 5(a) that Lmax
continuously increases witha at the boundary between the
crumpled and the tubular phases, and thatLmax at eacha is
almost independent ofN. In the tubular phase ata
=200,Lmax is smaller than the surface lengthLs:

Ls . 41 sN = 600,a = 200d,

Ls . 56 sN = 1000,a = 200d. s6d

The lengthLs were obtained byLs=ÎkLs
2l, wherekLs

2l was
obtained in the tubular phase close to the crumpled phase.
While Lmax in Fig. 5(a) is almost independent ofN, Ls in-
creases withN at a=200 as shown in Eq.(6). Hence it is
expected thatLmax/Ls→0 in the limit N→` at least in the
tubular phase close to the crumpled phase.

Figure 5(b) shows thatLmax in the tubular phase gradually
increases asN increases. However, we find thatLmax is con-
siderably smaller thanLs in the tubular phase close to the
smooth phase. In fact, we haveLmax.43 for N=1000 and
Lmax.54 for N=1500, which are smaller than the length of
the surfaces shown below:

Ls . 122 sN = 1000,a = 12 000d,

Ls . 172 sN = 1500,a = 20 000d.

Therefore it is also expected thatLmax/Ls→0 in the limit
N→` everywhere in the tubular phase.

Finally, we plot in Figs. 6(a) and 6(b) the bending energy
S2=ois1−cosuid, which reflects a smoothness of surfaces
and it is not included in the Hamiltonian. WhileS2/NB con-
tinuously changes againsta in Fig. 6(a), it is clearly discon-
tinuous in Fig. 6(b). These results indicate that the tubular
phase is smoothly connected to the crumpled phase and dis-
continuously connected to the smooth phase. The higher-
order nature of the transition between the tubular and the
crumpled phases has also been seen in the specific heatCS3
=sa2/NdskS3

2l−kS3l2d. In fact, althoughCS3
has a peak ata

.100, there was no growth of the peak with increasingN.
The bending energyS2/NB is not an order parameter re-

garding to the tubular phase because it is also nonzero in the
crumpled phase. However,S2/NB plays a role of order pa-
rameter, as can be seen in Fig. 6(b), as far as we confine
ourselves to the transition between the tubular phase and the
smooth phase.

V. SUMMARY AND CONCLUSION

We have investigated the phase structure of a tethered
surface model of Nambu-Goto embedded inR3, and found
that there are three distinct phases: smooth, tubular, and
crumpled. Moreover, the model undergoes a first-order tran-
sition between the smooth and the tubular phases, and a
higher-order transition between the tubular and the crumpled
phases. The surface forms an oblong and one-dimensional
object in the tubular phase. It is remarkable that the rota-
tional symmetry or the symmetry of isotropy inherent in the
model is spontaneously broken in the tubular phase.

An important point to emphasize is that both terms areaS1
and deficit angleS3 are the cause of such variety of phases.
Moreover, it is quite likely that the straight-line structure in
the tubular phase survives even at sufficiently largeN, be-
cause not only the oblong triangles but also the deficit angle
term can make the surface tubular.

Further numerical studies on the fluid model and on the
model with extrinsic curvature would give us hints to clarify
the phase diagram of the Nambu-Goto surface model with
the deficit angle term.

FIG. 5. Maximum bond lengthLmax at (a) relatively smalla,
and at(b) relatively largea. The unit ofLmax is ÎkT/a, and that of
a is kT/a.

FIG. 6. The bending energyS2/NB=ois1−cosuid /NB at (a) rela-
tively small a, and at(b) relatively largea. NB is the total number
of bond. The unit ofa is kT/a.
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