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Phase transitions of a tethered surface model with a deficit angle term
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The Nambu-Goto model is investigated by using the canonical Monte Carlo simulations on fixed connec-
tivity surfaces of spherical topology. Three distinct phases are found: crumpled, tubular, and smooth. The
crumpled and the tubular phases are smoothly connected, and the tubular and the smooth phases are connected
by a discontinuous transition. The surface in the tubular phase forms an oblong and one-dimensional object
similar to a one-dimensional linear subspace in the Euclidean three-dimensionaRSpatss indicates that
the rotational symmetry inherent in the model is spontaneously broken in the tubular phase, and it is restored
in the smooth and the crumpled phases.
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I. INTRODUCTION energy smoothing the surface. We will show numerically that
. ) the model has three distinct phases; crumpled, tubular, and
A considerable number of studies have been conducted o§inooth. The crumpled and the tubular phases are connected
the phase structure of the elastic membrane model ofy 5 higher-order transition, whereas the tubular and the
Polyakov-Kleinert and Helfricti1-14. The Hamiltonian of  smooth phases are connected by a first-order transition.
the model includes not only the Gaussian term but also a \ye consider that oblong tubular surfaces can be seen in
bending energy term, which can make the surface smoothhe Nambu-Goto model. A discretized Hamiltonian of the
Thus it has been recognized that there are a smooth phaggmpu-Goto string is given by the sum of the area of tri-
and a crumpled phase in the model of spherical topologyangles, which corresponds to the Gaussian term of the
Numerical studies have also been made to understand t'"F?onakov-KIeinert model. The area term of the Nambu-Goto
phase transitions in the tethered model and in the fluid modg},gge| imposes a constraint only on the area of triangles, and
on triangulated surfacgd5-27, where the tethered and the pence all the triangles become oblong and form spiky con-
fluid models are those defined on fixed connectivity Surfaceﬁgurations. In fact, it is well known that the partition func-
and on dynamically triangulated surfaces, respectively. Extion of the Nambu-Goto model is not well defing@s).
cept those smooth surfaces and crumpled surfaces, some ligpwever, it is possible that the partition function of the
ear structure [28-3] and branched polymer surfaces Nambu-Goto model changes to a well-defined one if some
[26,32,33 have also been recognized in the context of suraqgitional term is included in the partition function, as was
face models. S suggested already in R488]. Then, it is expected that such
On the other hand, little is known about a model of tUbU'obIong triangles may form tubular surfaces in such a well-
lar surfaces. A tubular surface is considered as one of thgefined model if the additional term tends to modify the

Reviewing references on tubular surfaces, we must recall
anisotropic surface models that have been constructed to un- Il. MODEL

derstand tubular surfacgg,36]. A tubular phase is realized
in the anisotropic model due to an anisotropic bending The area energ$, is defined by
modulus.

However, there has been no study that tried to understand S = > Axs (1)
tubular surfaces from an isotropic surface model. Therefore 4
it will be interestng to study an isotropic tethered surfacewhereA, is the area of the trianglA in a triangulated sur-
model corresponding to the Nambu-Goto strif8y]. The face of spherical topology. This energ of Eqg. (1) is a
purpose of this study is to understand the phase structure atraightforward discretization of the Nambu-Goto action de-
the tethered surface model of Nambu and Goto with a deficihoted byS=[d?x\g, whereg is the determinant of the first
angle term, which is obtained from the co-ordination depenfundamental form on the world surface swept out by strings.
dent term. No bending energy term is included in the Hamil- The partition functionZ of the Nambu-Goto surface
tonian, whereas the deficit angle term serves as a curvaturgodel is defined by

N
Z(w)=| [Tdxexp-9),
i=1
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where the Hamiltoniais is given by a linear combination of

the Gaussian terr8; and the deficit angle tert§;, in which g
& is the sum of the angles of vertices meeting at the vertex 100}
S(X,7) denotes thaS depends on the embeddiixgand the
triangulation? fixed on a uniform lattice, whose construction
will be described further in Sec. Ill. The center of the surface v 0 100 200 - 0() 1000020000
is fixed to remove the translational zero modéa) of Eq. (@) a (b) o
(2) denotes that the model is dependent on the paramaeter
which is the coefficient of the deficit angle tei®g It should
also be noted that the Hamiltonig®{X,7) is defined only

e . . t
with intrinsic variables of the surface and hence mdepender’lﬁl
of the extrinsic geometries.

The deficit angle terng; has a deep connection with the

integration measureX; [39-41. We have to remind our-

selves thatlX, can be replaced by a weighted measixg®, ~ 2ndSs(@=2iln g;, which is different fromS; in Eq. (2). The
whereq; is the co-ordination number of the vertexanda Iis well definedness of the uniform lattice must be confirmed,

considered to ber=3/2. Considering thag; is a volume since there are finitely many uniform lattices constructed in
weight of the vertes, we think it is possible to assumeas IS technique for eaciN. We have first confirmed that a
an arbitrary number. Moreover, the co-ordination numiger f1Xed connectivity surface model, which is defined &y

N=340

FIG. 1. (a) X? obtained at relatively smatt in the vicinity of the
boundary between the crumpled and the tubular phgbpx? ob-
ined at relatively larger in the vicinity of the boundary between
e tubular and the smooth phases. The uniKdfnd « is kT/a,
wherea is the surface tension.

can be replaced by the vertex angleaccording to +bS,, is well defined on such uniform lattices. In fact, the
specific heat for the bending ener§yis independent of the
,dXq” — IdX exp(az In 5i>_ choice of the uniform lattice.
i The canonical Metropolis technique is used to updéte

The positionX; is moved to a new positiolX{ =X;+AX;,

The constant termx;In 27 is included to normaliz&; in Eq. whereAX; is randomly chosen in a small sphed. is ac-

(2) so thatS;=0 whené, =27 at every vertex. Thus we have . o N
the expressiots; in EQ. (2). Note thatS;=0 not only on the cepted with the probability Mi,exii~AS)], where AS

flat surface but also on cylindrical surfaces. =H(new) —Sold). The radius of the small sphere fai,; is
It should also be noted that the deficit angle teBgis chosen at the beginning of the simulations to maintain 35 —
0 - i i
expected to play a nontrivial role in the discrete model which20%0 of acceptance rate; almost all MC simulations are done

has a finite number of verticdd. We expect tha; is not on about 50% of acceptance rate.

on .
irrelevant in surface models such as the Nambu-Goto model tﬁ Iow%r lzour;(d 1?1 Ao I |_m$r?sed on the arefe:hof :r!ang:es
or the Polyakov-Kleinert model. In fact, it was reported byIn € update oK, whereA, Is the mean area of the triangles

Ref. [25] where the phase transition of the fluid model of _computed at every 250 MC3Monte Carlo sweepsand A

Polyakov and Kleinert depends on the coordination depen'—S constant due to the relat|($1/N:1:5. However, the areas
dent term=In q. are almost free from such constraint, because the areas of

The unit of physical quantities can be explained as fol-a.ImOSt gll triangles are Igrggr.than‘fao throughout the MC
lows: The HamiltonianS in Eq. (2) is obtained fromS simulations. No constraint is imposed on the bond length.

=aS, - aS; by assuming the surface tension coefficiards
a=1. It should be noted that the choiee1 represents not IV. RESULTS
only a redefinition ofw as«/a but also a choice of the unit e first show in Figs. @g) and Xb) the mean square size
of length asykT/a=1, whereT is the temperature arkithe  y2 qefined by
Boltzmann constant. Thus the unit afbecomeskT/a. The
choice of \kT/a=1 for the unit of the length is possible , 1 -, o1
because of the scale invariant property of the partition func- X'= N; (Xi=X)%  X= NE,: X, )
tion in Eq. (2). .
where X is the center of the surfac&? in Fig. 1(a) repre-
Ill. MONTE CARLO TECHNIQUE sents that the size of surfaces continuously increases with
increasinga, and also represents that the shape of the sur-
The triangulated surfaces, on which the model is definedfaces rapidly changes at=100. On the other hand?
are uniform in the co-ordination numbgr On the uniform  shown in Fig. 1b) clearly represents some discontinuous
lattice, the number of verticed, of g=5 isNs=12, and all  transition, whereX? abruptly changes. The dashed lines
other vertices are ofj=6. These lattices were obtained by drawn vertically on the data of thd=1000 surface in both
Monte Carlo(MC) simulations with the dynamical triangu- of the figures represent the phase boundaries, on which we
lation for a model whose Hamiltonian is defined 8¢  focused our attention in this paper.
+bS,— aSy(q) with sufficiently largee, whereS;==12 is the The convergence speed of MC is very low in the tubular
Gaussian termS,=2;(1-cos#) the bending energy term, phase close to the smooth phase. The total number of MCS at

066144-2



PHASE TRANSITIONS OF A TETHERED SURFACE. PHYSICAL REVIEW E 70, 066144(2004)

tubular

\

S50F

smooth 7]

500 1000 500 1000
(a) N (b) N

FIG. 2. (a) Log-log plot of X?> vs N at «=50 (crumpled phase
and «=200(tubular phasg and(b) those obtained at close to the
phase boundary of the discontinuous transition. The unXfs
kT/a.

«=20000 on theN=1500 surface is about>210°, where
1.5x 10° MCSs were discarded for the thermalization. This
is the reason why we use surfaces of size uN+d1500. The |
reason of the low convergence speed seems due to a straigt
line structure of the surface, which will be shown below.
Since the vertices can move only along the line, the surface
deforms very slowly. On the contrary, the convergence both
in the smooth phase and in the crumpled phase is relatively
faster than that in the tubular phase. In the simulation the
expected relatios;/N=3/2 issatisfied in the configurations
reached after the thermalization at every

Figure 2a) shows log-log plots oX? againstN obtained
at =50 anda=200. Plots ofX? againstN in Fig. 2b) de-
noted bytubular (smooth were obtained belowabovg the
discontinuous transition point in eabhas shown previously
in Fig. 1(b). The straight lines plotted in Figs(& and 2b)
are those fitted by

FIG. 3. Snapshots oN=1000 surfaces obtained &) «=50

(crumpled, (b) «=200 (tubulap, (c) a=12 000 (tubulan, and (d)

a=16 000(smooth. Surfaces ina), (b), and(d) are drawn in the
same scale, which is different from that (c).

structure shown in Fig.(8) is expected to survive even at a
sufficiently largeN. The reason is because bddhand ob-
long triangles tend to straighten the surface.

Figures 4a) and 4b) are normalized distributioh(L) of
@) the bond lengthL sampled at every 500 MCSs in the final

2Xx 10" MCSs onN=1000 surfaces. The normalization of

h(L) is given by X;h(L)/AL=1, whereAL=0.02, and the
sumz; runs over all bonds and henggl becomes identical
with Ng the total number of bonds. The dashed and solid
curves denoted bgrumpledand tubular in Fig. 4(a) were
obtained ate=50 and «=200, respectively, and those de-
noted bysmoothand tubular in Fig. 4b) were obtained at
=16 000 andae=12 000, respectively.

We note thah(L) obtained on surfaces of size other than
N=1000 are exactly identical with(L) in Fig. 4a) if « is
identical with each other. Moreoveh(L) obtained at the

X2 o N2/H

whereH is the Hausdorff dimension. From the slope of the
plotted lines, we have

Hso=7.24+0.48, Hno=1.93+0.01, (5)

whereHsgy andHg,,, were obtained from the data denoted by
a=50 in Fig. 2a) and those bymoothin Fig. 2(b), respec-
tively. Those results are in agreement with our expectation
In fact, H is expected to be very large in the crumpled phase
and it is also expected to Ib¢=2 in the smooth phase. More-
over, we haveH,p,=1.80+0.02 andH,;,=1.22+0.03, which

were obtained from the data denoted &y 200 in Fig. 2a) ooil ' _ ool ' _
and those byubularin Fig. 2(b), respectivelyH,q, andHyp { % crumpled smooth
slightly deviate fromH=2 which is confirmed in the case of 3 N a - 0=16000
branched polymer surfacg26], where surfaces randomly = {0\ tubular = i

. . 0.005} ouar 0.005F | |
stretch and hence are rotationally symmetric. \ - 0200 P tubular

Snapshots ofN=1000 surfaces are shown in Figs. 4 :=12000

3(a)-3(d) obtained at «=50,«=200,a=12000, anda« 0 LN 0 L .

=16 000. Figures @), 3(b), and 3d) were drawn in the same (@) 0 2 L4 6 (b) 0 10 L 20
scale, which is different from that in Fig(®. The axis di-

rection of the surface in Fig.(8) is spontaneously chosen.  FIG. 4. Normalized distributiom(L) of the bond lengtH. ob-
The direction of the axis remains almost unchanged throughained at(a) a=50 (crumpled, and &=200 (tubulay, and at(b) «
out the MC simulation. Thus we find no tubular surface=12 000(tubulap, and «=16 000(smooth, on N=1000 surfaces.
bending in the tubular phase fof<1500. The straight-line  The unit ofL is VkT/a.
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FIG. 5. Maximum bond length.q, at (a) relatively smalla, FIG. 6. The bending enerd$s/Ng=3,(1-cos#,)/Ng at (a) rela-
and at(b) relatively largea. The unit ofLyayis VkT/a, and that of  tively small @, and at(b) relatively largea. N is the total number
ais kT/a. of bond. The unit ofa is kT/a.
smooth phase, denoted Isynoothin Fig. 4(b), is indepen- L= 172 (N= 15004 = 20 000.

dent of bothN and « in the smooth phase. Whilb(L) is

dependent orw in the tubular phase close to the crumpled o . -

phase, it is almost independent of bdtland« in the tubular 'Il\'lhetfore it 'Sh alsq iﬁpeftgdl thmﬁa"“‘s_)o in the fimit
hase close to the smooth phase. The fluctuations of the sur- . everywnere in the fubuiar phase. .

p : Finally, we plot in Figs. 6a) and &b) the bending energy

face size in the tubular phase close to the smooth phase =>.(1-cosf), which reflects a smoothness of surfaces

relatively larger than those in the tubular phase close to theZ ~ . . L )
crumpled phase. and it is not included in the Hamiltonian. Whi®/Ng con-

e tinuously changes againatin Fig. 6@), it is clearly discon-
of ::}Zﬁg::?glt;i n\,c\),ﬁghtT:tngep?éssgr?tlggb:??; %;Lhrz e}rsel‘j]f;iver_tinuous in Fig. @b). These results indicate that the tubular
sal in a sense that(A) is independent not only ol but also phase is smoothly connected to the crumpled phase and dis-

£ o h(A) i Cinfl d by the di i ¢ continuously connected to the smooth phase. The higher-
ot a. (A) is not in uenced even by the discontinuous tran- yor patyre of the transition between the tubular and the
sition. In fact,h(A) obtained in the tubular phase is exactly

, ; ) X Y crumpled phases has also been seen in the specific’:lgSeat
identical not only with that in the smooth phase but also Wlth:(ale)(<%>_<%>2)_ In fact, althoughCs. has a peak at

that in the crumpled phase. o .
It must be checked that the size of triangles is negligible 100, there_was no growth .Of the peak with increasing
) i The bending energ$,/Ng is not an order parameter re-
compared to the size of surfaces at sufficiently lakgen : g _
garding to the tubular phase because it is also nonzero in the

order to see that the maximum bond length,, is consider-
ably smaller than the size of surfaces in the tubular phase, W%rumpled phase. Howeveg,/N; plays a role of order pa

o . : : rameter, as can be seen in Fighy as far as we confine
plot in Figs. %a) and %b) L., obtained in the final 2 ' -
% 107 MCSs on each surface. We find in Figabthat L., ourselves to the transition between the tubular phase and the

continuously increases with at the boundary between the smooth phase.
crumpled and the tubular phases, and thgt, at eacha is
almost independent ofN. In the tubular phase at

. V. SUMMARY AND CONCLUSION
=200, Liyax is smaller than the surface lendtly:

We have investigated the phase structure of a tethered

Ls=41(N=600,a =200, surface model of Nambu-Goto embeddedFi#, and found
that there are three distinct phases: smooth, tubular, and
crumpled. Moreover, the model undergoes a first-order tran-
sition between the smooth and the tubular phases, and a

. 5 ) higher-order transition between the tubular and the crumpled
The lengthL, were obtained by,=+(L?), where(L2) was phases. The surface forms an oblong and one-dimensional
obtained in the tubular phase close to the crumpled phasepiject in the tubular phase. It is remarkable that the rota-
While Lnay in Fig. 5@) is almost independent df, Ls in-  tional symmetry or the symmetry of isotropy inherent in the
creases WittN at «=200 as shown in Eq(6). Hence it is  model is spontaneously broken in the tubular phase.
expected that ,/Ls— 0 in the limit N— <o at least in the An important point to emphasize is that both terms Sea
tubular phase close to the crumpled phase. and deficit angleS; are the cause of such variety of phases.

Figure gb) shows that o« in the tubular phase gradually Moreover, it is quite likely that the straight-line structure in

increases abl increases. However, we find thiah,,is con-  the tubular phase survives even at sufficiently lakyebe-
siderably smaller thai in the tubular phase close to the cause not only the oblong triangles but also the deficit angle
smooth phase. In faCt, we ha‘h,%axz 43 for N=1000 and term can make the surface tubular.

Lmax="54 for N=1500, which are smaller than the length of  Fyrther numerical studies on the fluid model and on the

Ls=56 (N=10004« =200). (6)

the surfaces shown below: model with extrinsic curvature would give us hints to clarify
the phase diagram of the Nambu-Goto surface model with
Ls=122(N=1000« =12 000, the deficit angle term.
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